[YOLO] SAM(Segment Anything Model)
AI, ML, DL 2026. 2. 13. 09:59 |반응형
SAM3를 사용해 보자.
다른 모델과 달리 SAM3 가중치(sam3.pt)는 자동으로 다운로드되지 않는다.
Hugging Face에 가입하고 접근 허가를 받아야 다운로드할 수 있다.
from ultralytics.models.sam import SAM3SemanticPredictor
# Initialize predictor with configuration
overrides = dict(
conf=0.25,
task="segment",
mode="predict",
model="sam3.pt",
half=True, # Use FP16 for faster inference
save=False
)
predictor = SAM3SemanticPredictor(overrides=overrides)
# Set image once for multiple queries
predictor.set_image("rose.png")
# Works with descriptive phrases
results = predictor(text=["red rose", "pink rose"])
results[0].show()
빨간 장미와 분홍 장미를 구분한다.


from ultralytics.models.sam import SAM3SemanticPredictor
# Initialize predictor with configuration
overrides = dict(
conf=0.25,
task="segment",
mode="predict",
model="sam3.pt",
half=True, # Use FP16 for faster inference
save=False
)
predictor = SAM3SemanticPredictor(overrides=overrides)
# Set image once for multiple queries
predictor.set_image("office.jpg")
# Works with descriptive phrases
results = predictor(text=["person with gray shirt"])
results[0].show()
회색 옷을 입은 사람을 찾는다.


from ultralytics.models.sam import SAM3SemanticPredictor
# Initialize predictor with configuration
overrides = dict(
conf=0.25,
task="segment",
mode="predict",
model="sam3.pt",
half=True, # Use FP16 for faster inference
save=False
)
predictor = SAM3SemanticPredictor(overrides=overrides)
# Set image once for multiple queries
predictor.set_image("catsdogs.png")
# Works with descriptive phrases
results = predictor(text=["cats", "dogs"])
results[0].show()
개와 고양이를 구분한다.


from ultralytics.models.sam import SAM3SemanticPredictor
# Initialize predictor with configuration
overrides = dict(
conf=0.25,
task="segment",
mode="predict",
model="sam3.pt",
half=True, # Use FP16 for faster inference
save=False
)
predictor = SAM3SemanticPredictor(overrides=overrides)
# Set image once for multiple queries
predictor.set_image("sleep.jpg")
# Works with descriptive phrases
results = predictor(text=["sleeping student on desk"])
results[0].show()
책상에서 자는 학생을 찾는다.


from ultralytics.models.sam import SAM3SemanticPredictor
# Initialize predictor with configuration
overrides = dict(
conf=0.25,
task="segment",
mode="predict",
model="sam3.pt",
half=True, # Use FP16 for faster inference
save=False
)
predictor = SAM3SemanticPredictor(overrides=overrides)
# Set image once for multiple queries
predictor.set_image("sleep.jpg")
# Works with descriptive phrases
results = predictor(text=["student sleeping on desk"])
results[0].show()
descriptive phrase를 바꿔보자.

반응형
'AI, ML, DL' 카테고리의 다른 글
| [YOLO] YOLOE Real-Time Seeing Anything Zero-shot 실시간 객체 탐지 (2) | 2026.02.12 |
|---|---|
| [YOLO] Instance Segmentation 객체 분할 (0) | 2026.02.10 |
| [YOLO] Multi-Object Tracking 물체 추적 (0) | 2026.02.10 |
| [YOLO] Model Training 모델 훈련 (0) | 2026.02.09 |
| [YOLO] with OpenCV (0) | 2026.02.08 |
